AI Roadmap Workbook for Non-Technical Business Leaders
A clear, hype-free workbook showing how AI can truly benefit your business — and where it may not be useful.
The Dev Guys – Mumbai — Think deeply. Build simply. Ship fast.
Purpose of This Workbook
Modern business leaders face pressure to adopt AI strategies. Everyone seems to be experimenting with, buying, or promoting something AI-related. But many non-technical leaders are caught between extremes:
• Saying “yes” to every vendor or internal idea, hoping some of it will succeed.
• Declining AI entirely because of confusion or doubt.
This workbook offers a balanced third option: a calm, realistic way to identify where AI truly fits in your business — and where it doesn’t.
You don’t have to be technical; you just need to know your operations well. AI is only effective when built on your existing processes.
How to Use This Workbook
Either fill it solo or discuss it collaboratively. It’s not about completion — it’s about clarity. By the end, you’ll have:
• A short list of meaningful AI opportunities tied to profit or efficiency.
• Understanding of where AI should not be used.
• A clear order of initiatives instead of scattered trials.
Think of it as a guide, not a form. Your AI plan should be simple enough to explain in one meeting.
AI strategy is just business strategy — minus the buzzwords.
Starting Point: Business Objectives
Start With Outcomes, Not Algorithms
Too often, leaders ask about tools instead of outcomes — that’s the wrong start. Non-technical leaders should start from business outcomes instead.
Ask:
• Which few outcomes will define success this year?
• Where are mistakes common or workloads heavy?
• Which decisions are delayed because information is hard to find?
It should improve something tangible — speed, accuracy, or cost. Only link AI to real, trackable business metrics.
Leaders who skip this step collect shiny tools; those who follow it build lasting leverage.
Step 2 — See the Work
Map Workflows, Not Tools
You must see the true flow of tasks, not the idealised version. Pose one question: “What happens between X starting and Y completing?”.
Examples include:
• Lead comes in ? assigned ? follow-up ? quote ? revision ? close/lost.
• Support ticket ? triaged ? answered ? escalated ? resolved.
• Invoice generated ? sent ? reminded ? paid.
Each step has three parts: inputs, actions, outputs. AI adds value where inputs are messy, actions are repetitive, and outputs are predictable.
Rank and Select AI Use Cases
Assess Opportunities with a Clear Framework
Evaluate AI ideas using a simple impact vs effort grid.
Use a mental 2x2 chart — impact vs effort.
• Focus first on small, high-impact changes.
• Reserve resources for strategic investments.
• Nice-to-Haves — low impact, low effort.
• Delay ideas that drain resources without impact.
Consider risk: some actions are reversible, others are not.
Begin with low-risk, high-impact projects that build confidence.
Laying Strong Foundations
Fix the Foundations Before You Blame the Model
Messy data ruins good AI; fix the base first. Ask yourself: Is the data 70–80% complete? Are processes well defined?.
Keep Humans in Control
Keep people in the decision loop. As trust grows, expand autonomy gradually.
Avoid Common AI Pitfalls
Learn from Others’ Missteps
01. The Shiny Demo Trap — cloud infrastructure getting impressed by flashy demos with no purpose.
02. The Pilot Graveyard — endless pilots that never scale.
03. The Automation Mirage — expecting overnight change.
Define ownership, success, and rollout paths early.
Working with Experts
Non-tech leaders guide direction, not coding. Focus on measurable results, not buzzwords. Expose real examples, not just ideal scenarios. Clarify success early and plan stepwise rollouts.
Transparency about failures reveals true expertise.
Signs of a Strong AI Roadmap
How to Know Your AI Strategy Works
You can summarise it in one slide linked to metrics.
Your team discusses workflows and outcomes, not hype.
Pilots have owners, success criteria, and CFO buy-in.
Essential Pre-Launch AI Questions
Before any project, confirm:
• What measurable result does it support?
• Is the process clearly documented in steps?
• Is the data complete enough for repetition?
• Where will humans remain in control?
• How will success be measured in 90 days?
• What’s the fallback insight?
The Calm Side of AI
AI done right feels stable, not overwhelming. Focus on leverage, not hype. True AI integration supports your business invisibly.